El valor absoluto es una herramienta matemática que se utiliza para representar la distancia de un número a cero. Por definición, el valor absoluto de un número siempre es un número positivo o cero. En este artículo, analizaremos algunos ejemplos para comprender su aplicación.
¿Cuál es el valor absoluto de 6? El valor absoluto de 6 es 6. Del mismo modo, 6 está a una distancia de 6 unidades de cero en la recta numérica. Por lo tanto, el valor absoluto de 6 es 6.
¿Cuál es el valor absoluto de |-2|? El valor absoluto de |-2| es 2. En este caso, el número -2 se encuentra a dos unidades de cero en la recta numérica. Al aplicar el valor absoluto, obtenemos el valor positivo correspondiente, que es 2.
¿Cuál es el opuesto de 7 y su valor absoluto? El opuesto de 7 es -7. El valor absoluto de -7 es 7. Esto se debe a que -7 está a una distancia de 7 unidades de cero en la recta numérica. Al aplicar el valor absoluto, obtenemos el valor positivo correspondiente, que es 7.
En conclusión, el valor absoluto es una herramienta matemática que se utiliza para representar la distancia de un número a cero. Al aplicar el valor absoluto, siempre obtenemos un número positivo o cero. Además, el valor absoluto se aplica en una variedad de problemas matemáticos, incluyendo la determinación del opuesto de un número y la raíz quinta de un número.
La raíz enésima de 1 es 1, sin importar el valor de n.
La raíz cuadrada de -1 no tiene solución en los números reales, ya que cualquier número real al ser elevado al cuadrado es siempre un número positivo. Sin embargo, se puede expresar como un número complejo, donde se utiliza la unidad imaginaria «i», siendo la respuesta «i».
La raíz cuadrada de 16 es 4.